Solved integral of the form ∫ln(αx+√(β+α^2x^2))dx
📂 Mathematics
👤 plati-goods
Product Description
Solving an indefinite integral of the form ∫ln(αx+√(β+α^2x^2))dx by the method of integration by parts, where α takes the values 1,2,3,4,5,…n; β takes values 1,2,3,4,5,…m..
An example of solving integrals for α=1, β=3 is considered; α=2, β=4; α=3, β=1 α=4, β=5.
∫ln(αx+√(β+α^2x^2))dx, ∫ln(x+√(3+x^2))dx, ∫ln(2x+√(4+4x^2))dx, ∫ln( 3x+√(1+9x^2))dx, ∫ln(4x+√(5+16x^2))dx
The solution is in PDF format
An example of solving integrals for α=1, β=3 is considered; α=2, β=4; α=3, β=1 α=4, β=5.
∫ln(αx+√(β+α^2x^2))dx, ∫ln(x+√(3+x^2))dx, ∫ln(2x+√(4+4x^2))dx, ∫ln( 3x+√(1+9x^2))dx, ∫ln(4x+√(5+16x^2))dx
The solution is in PDF format
No Reviews Yet
Be the first to leave a review for this product!
Related Products
Option 12 DHS 9.2
Seller: Chelovek10000
IDZ 9.1 - Option 14. Decisions Ryabushko AP
Seller: Massimo86
IDZ 8.4 - Option 14. Decisions Ryabushko AP
Seller: Massimo86
IDZ Ryabushko 8.4 Variant 12
Seller: AlexJester147
IDZ 8.4 - Option 1. Decisions Ryabushko AP
Seller: Massimo86
IDZ Ryabushko 19.1 Variant 10
Seller: AlexJester147
IDZ Ryabushko 11.1 Variant 22
Seller: AlexJester147
IDZ Ryabushko 8.3 Variant 12
Seller: AlexJester147